第137回日本森林学会大会 発表検索
講演詳細
防災・水文部門[Forest Disaster Prevention and Hydrology]
| 日付 | 2026年3月18日 |
|---|---|
| 開始時刻 | ポスター発表 |
| 会場名 | 多目的ホール |
| 講演番号 | PJ-57 |
| 発表題目 | DBH Estimation from Mobile LiDAR in Natural Temperate Mixed Forests DBH Estimation from Mobile LiDAR in Natural Temperate Mixed Forests |
| 所属 | 九州大学 |
| 要旨本文 | DBH is fundamental to forest inventory and biomass estimation, but conventional field measurement is labor intensive. Mobile LiDAR can reduce effort, yet DBH estimation in mixed forests is challenging because leaning or curved stems, buttresses, and multi-stemming complicate breast-height geometry. We present an open-source Python workflow that tracks stems across multiple height slices, reconstructs 3D stem axes, and estimates DBH from axis-orthogonal sections, with FAO-consistent height adjustment when irregular bases are detected. Compared with existing open-source DBH software, it shows more complete stem identification and stem-geometry labeling. Against field DBH inventory, it reduces error relative to a published baseline (RMSE: 1.18 cm vs. 2.01 cm). Future work will scale processing to the full 1 ha plot and conduct stem-form-specific error analyses to diagnose dominant error sources and further improve robustness. |
| 著者氏名 | ○PARK, JI HYEOK1 ・ Gomez, Christopher2 ・ Kume, Tomonori1 |
| 著者所属 | 1Kyushu University ・ 2Kobe University |
| キーワード | 1ha Scale Forest Inventory, Algorithm, Point Cloud Data |
| Key word | 1ha Scale Forest Inventory, Algorithm, Point Cloud Data |